Physiological, Biochemical, and Molecular Mechanisms of Heat Stress Tolerance in Plants

نویسندگان

  • Mirza Hasanuzzaman
  • Kamrun Nahar
  • Md. Mahabub Alam
  • Rajib Roychowdhury
  • Masayuki Fujita
چکیده

High temperature (HT) stress is a major environmental stress that limits plant growth, metabolism, and productivity worldwide. Plant growth and development involve numerous biochemical reactions that are sensitive to temperature. Plant responses to HT vary with the degree and duration of HT and the plant type. HT is now a major concern for crop production and approaches for sustaining high yields of crop plants under HT stress are important agricultural goals. Plants possess a number of adaptive, avoidance, or acclimation mechanisms to cope with HT situations. In addition, major tolerance mechanisms that employ ion transporters, proteins, osmoprotectants, antioxidants, and other factors involved in signaling cascades and transcriptional control are activated to offset stress-induced biochemical and physiological alterations. Plant survival under HT stress depends on the ability to perceive the HT stimulus, generate and transmit the signal, and initiate appropriate physiological and biochemical changes. HT-induced gene expression and metabolite synthesis also substantially improve tolerance. The physiological and biochemical responses to heat stress are active research areas, and the molecular approaches are being adopted for developing HT tolerance in plants. This article reviews the recent findings on responses, adaptation, and tolerance to HT at the cellular, organellar, and whole plant levels and describes various approaches being taken to enhance thermotolerance in plants.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Heat tolerance in plants: An overview

Heat stress due to increased temperature is an agricultural problem in many areas in the world. Transitory or constantly high temperatures ause an array of morpho-anatomical, physiological and biochemical changes in plants, which affect plant growth and development and may ead to a drastic reduction in economic yield. The adverse effects of heat stress can be mitigated by developing crop plants...

متن کامل

Effects of seed pretreatment with 24-brassinolide on physiological and biochemical characters in tomato plants under salt stress

In order to study the diverse effects of seed priming with 24-epibrassinolide (EBL) (0, 0.1, 1 mg/l) to increase tolerance of tomato plants (Lycopersicon esculentum Mill.) to salinity (0, 70 and 140 mM NaCl), the experiments were conducted as factorial based on completely randomized design at greenhouse condition. Results showed that salt stress significantly decreased the growth of tomato plan...

متن کامل

Mechanisms of drought stress tolerance in cool season grasses

Drought stress is one of the most limiting abiotic stresses affecting growth, production and survival of plants in many areas of the world, and is expected to intensify considering the trend of climate change. Grass species are important for the sustainability of agricultural systems, forage resources for animal farming and landscapes. Grass species adapt to water deficit by different morpholog...

متن کامل

Morpho-physiological, quantitative and qualitative Responses of Two Strawberry (Fragaria × ananassa) Cultivars to Heat Stress in Presence of Arbuscular Mycorrhiza Fungus

Heat stress is one of the most important weather phenomena that has caused destructive damaged many on agricultural crops, such as strawberries. For this purpose, five temperature treatments (control (23±2 days/16±2 nights), 30, 35, 40 and 45 °C) and two levels of mycorrhizal fungi (presence Funeliformis mosseae or absence) and tow cultivars of strawberry (Paros and Queen Elisa) as a factorial ...

متن کامل

Mechanism of Salinity Tolerance in Plants: Physiological, Biochemical, and Molecular Characterization

Salinity is a major abiotic stress limiting growth and productivity of plants in many areas of the world due to increasing use of poor quality of water for irrigation and soil salinization. Plant adaptation or tolerance to salinity stress involves complex physiological traits, metabolic pathways, and molecular or gene networks. A comprehensive understanding on how plants respond to salinity str...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2013